

CONTIbugs EIB.12.028 17-02-2016 | Berlin

technische universität dortmund

Prof. Schmid / Prof. Bühler Correlation of population dynamics & productivity

Prof. de Lorenzo Tuning genetic circuits towards stable phenotypes

Prof. Molin / Dr. Sternberg Biofilm specific tool development

Objectives

General Overview

Establishment of the necessary methodology to investigate *rpoS* expression in biofilms

Identification of a global stress response signal in *Ps*. biofilms

How hetero- / homogenous is the stress response in biofilms?

- Limitation of growth factors
- Toxification by substrate / product
- Stress induced by expression of heterologous pathways

Strategy -construction of strains:

- P. taiwanensis VLB120_gfp RpoS_mCherry,
- *P. taiwanensis* VLB120_gfp ΔRpoS,
- P. taiwanensis VLB120_gfp,
- P. taiwanensis VLB120 T7 B83_gfp
- *P. taiwanensis* VLB120 T7 B83_gfp RpoS_mcherry

- How does heterogeneity influence biofilm productivity?
- How can it be optimized?

P. taiwanensis VLB120 T7 B83

technische universität

dortmund

Fermentative production of 3- HIBA using *P. taiwanensis* VLB120 biofilms

- Biofilm-Membrane-Reactor to guarantee continuous (S)-3-HIBA production
- Oxygen supply almost exclusively via transmembrane diffusion
- Evaluation of different wall thickness and tube length

U technische universität dortmund

Fermentative production of 3- HIBA using *P. taiwanensis* VLB120biofilms

- Transmembrane oxygen diffusion limits productivity
- Isobutyric acid conversion limits overall reaction rate
- Glucose limitation leads to possitive selection for high producers
- Currently best setup continuously produces up to 6 mM (S)-3-HIBA

J technische universität dortmund

Workflow for clonal heterogeneity / variability investigations

technische universität

dortmund

Starting point for a detailed investigation to identify the reason for clonal heterogeneity

No significant difference in growth behavior between constructs and wild type with an exception of Δ RpoS showing much slower growth

technische universität

dortmund

Growth behavior of the various *P. taiwanensis* constructs

C

dortmund

Fluorescence profile of *P. taiwanensis* constructs. Experiments performed in M9* media +1% glucose. Measurements of fluorescence were performed with TECAN. Excitation/emission wavelengths: GFP:488/522nm.

Fluorescence profiles of the various *P. taiwanensis* constructs

Average specific mcherry fluorescence in exponential (E) phase: 279,96 Average specific mcherry fluorescence in stationary (S) phase: 441,47 **1.58 fold increase** of fluorescence between E and S phases

Advanced flow cell design

CellAsic®ONIX

Luer ibiTreat[®]ONIX

Advanced flow cell design

Custom made 3D printed

Design criteria	
Hydrodynamics	Even flow of the media through the chamber
Working volume of the chamber	Chamber should be optimized to the desired thickness of the biofilm
General geometry	Chamber needs to fit to the inverse microscope
Silicon tube placement	To create an oxygen gradient

J technische universität dortmund

Advanced flow cell design

	3D Flow cell	CellAsic	μ-Slide	
Channel Height	6mm	undefined	0,80mm	
Channel Volume	4,8ml	undefined	0,2ml	
Flow rate	100µl/min	0.0083 μL/min	50µl/min	
Flow velocity	1,042 mm/min	undefined	12,5 mm/min	
Temperature control	Not possible*	Possible	Not possible*	
Application for biofilm studies	++	+	+++	

*Possible only with heating jacket

RpoS knock-out mutant develops thicker biofilms

CLSM pictures of a 7-day old *P. taiwanensis* VLB120 rpoS_mCherry (1), *P. taiwanensis* VLB120 Δ rpoS (2) biofilm grown in flow-chambers, Medium: FB + 0.3mM glucose, stained with Syto9. Experiment performed in Copenhagen.

Influence of Oxygen

ERA 🎖 IB

Additional O2 supply via silicon membrane

No additional O2 supply

Increased biomass formation; big macrocolonies; bead like structures

less beads structures thick carpet of single cells in upper layers

Carbon sources influence heterogeneity in *P. putida* KT2440

- Objective:
 - Investigate the impact of different carbon sources on *P. putida* KT2440 biofilm three-dimensional structure and population heterogeneity
- Methodology:
 - Dynamic biofilm flow chamber system
 - Confocal scanning laser microscopy of biofilm during 7 days
 - Plate mature biofilm (day 7) and look for differences in morphology

Carbon sources influence heterogeneity in P. putida KT2440

No

SCV

Citrate, succinate and glycerol:

Filaments Yes Yes Yes Yes Wrinkled, small Morphotypes Wrinkled,small Wrinkled, small None irregular irregular irregular

Glucose dose response:

Carbon sources influence heterogeneity in *P. putida* KT2440 – COMSTAT2

Biomass μm³/μm² after 7 days of cultivation of the following carbon sources:

- 1 mM citrate,
- 0.3 mM glucose,
- 20 mM glycerol and
- 20 mM succinate,
- 2 % glycerol in K10T-1 medium
- Glucose dose response [mM]

Carbon sources influence heterogeneity in *P. putida* KT2440 – COMSTAT2

Biomass ($\mu m^3/\mu m^2$) and roughness coefficient over time:

- Loss of biomass over time
- <u>Citrate</u>: larger variation of biomass
- roughness remains constant over time
- <u>Glucose and citrate</u>: Equally amount of biomass at day 7
- <u>Glucose</u>: roughness decreases over time

Citrate induces c-di-GMP alterations in *P.putida* KT2440 biofilms

- Objective:
 - Study differences of *P. putida* KT2440 variants obtained from 7 day-old biofilm grown on citrate, in order to investigate the impact of citrate on cell heterogeneity both genotypic and phenotypic.
- Methodology:
 - Phenotypic analysis on variants e.g. motility, biofilm capability and growth
 - Whole genome sequencing of selected variants
 - Biofilm flow chamber experiments on variants

Citrate induces c-di-GMP alterations in *P.putida* KT2440 biofilms - Phenotypes

Citrate induces c-di-GMP alterations in *P.putida* KT2440 biofilms - Phenotypes

Swimming motility

Relative to wt

Citrate induces c-di-GMP alterations in *P.putida* KT2440 biofilms - WGS

Illumnia MiSeq

- 50x coverage
- 150bp paired end

Strain #	Locus	Mutation Function	Morphology	Motility Swim	Growth	Biofilm CV stain	Air-liquid LB medium	Remarks
AMC72 wt				+++	+++	0	+	
AMC111	PP4943	fs glycosyl transferase	small	++	++	+	+	
AMC116	PP0129	SNP Diguanyalte cyclase	wrinkled	+	+	+++	++	In operon with <i>dsbA</i>
AMC119	PP5129	SNP predicted phosphatase		-	+	0	-	
AMC122	PP4671	SNP unknown	wrinkled	+	+	++	+++	In operon with a diguanylate cyclase
AMC124		SNP Intergenic region		+	?	+++		In region with flagella related genes
AMC127		SNP Intergenic region		+++	++	++	++	
AMJ168	PP4959	SNP Response regulator c-di-GMP	wrinkled	+++	+++	+++	+++	
AMC170	PP0129	SNP Diguanyalte cyclase	wrinkled	++	++	+++	+	In operon with <i>dsbA</i>

Citrate induces c-di-GMP alterations in *P.putida* KT2440 biofilms - biofilm flow chambers

- KT2440 wt AMC111 (small) AMC116 (w) AMC168 (w) AMC170 (w)
 - Low filamentation in AMC111 and AMC116
 - Same SNP in variant AMC116 and AMC170 but different biofilm capability
 - Variant AMC170 high biofilm capability-> can filaments be reduced when grown on glucose?

Citrate induces c-di-GMP alterations in *P.putida* KT2440 biofilms - COMSTAT2

After 7 days of cultivation on citrate

Reprogramming lifestyle and catalytic efficiency of *P. putida*

Benedetti I, de Lorenzo V, Nikel PI. (2016) Genetic programming of catalytic *Pseudomonas putida* biofilms for boosting biodegradation of haloalkanes. *Metab Eng.* **33**:109-18.

Reprogramming lifestyle and catalytic efficiency of *P. putida*

The key for lifestyle decision is intracellular levels of cd-GMP

Levels determined by interplay of GGDEF domains EAL & HD-GYP domains

YedQ \rightarrow cdGMP cyclase

YhjH → cdGMP phosphodiesterase

Engineering an inducible switch

CSIC CENTRO NACIONAL DE BIO

Engineering an inducible switch

CSIC CENTRO NACIONAL DE BIOTECNOLOGI

Cyclohexanone-dependent Biofilm formation

Cyclohexanone-dependent Biofilm formation

Cyclohexanone-dependent Biofilm formation

1-chlorobutane degradation: biofilm vs planktonic

Summary & Outlook

- Various experimental set-ups established for cultivation and subpopulation identification in planktonic as well as biofilm cultures
- RpoS based detection system is working
- Subpopulations / conditions identifed in biofilms
- In planktonic cultures significant differences in activities between different organisms observed
- Inducible genetic switches developed and established

Future Work:

- Transferring methodology to 3-HIBA producing strain
- Establishing a FACS protocol for biofilm growing organisms
- Biofilm analysis of RpoS tagged strains

Acknowledgments

<u>TU Dortmund University</u> Chair of Chemical Biotechnology Prof. A. Schmid

Dipl. Ing. Martin Lindmeyer M. Eng. Kamila Kozlowska Helmholtzzentrum für Umweltforschung Chair of Chemical Biotechnology Prof. S. Müller

<u>TU Denmark</u> Systems Biology Group Prof. S. Molin

<u>Centro Nacional de Biotecnologia CSIC</u> Prof. V. de Lorenzo

Dr. Claus Sternberg M.Sc. Anne-Mette Christensen Dr. Ana Carpio Dr. Esteban Martinez Dr. David Rodriguez

Funding:

Danish Agency for Science Technology and Innovation Ministry of Science Technology and Innovation