

Tailor made expression hosts depleted in protease activity for recombinant protein production

Project acronym: PRODuCE

Project no: EIB.12.037

Dr. Andreas Schiermeyer, Fraunhofer IME

ERA-IB-2 final conference, Berlin, 16./17.02.2016

Project partners

- C. Mark Smales (Industrial Biotechnology/School of Biosciences/University of Kent/Canterbury/UK)
- Christoph Heinrich (Xell AG/Bielefeld/Germany)
- Rita Abranches (Plant Cell Biology/ITQB/Oeiras/Portugal)
- Renier van der Hoorn (Plant Chemetics/MPIPZ/Germany)
- Andreas Schiermeyer (Plant Biotechnology/Fraunhofer)
 IME/Aachen/Germany
- Total project budget: 1.69 M €

Background

- Recombinant proteins represent a fast growing class of pharmaceuticals with annual sales of 140 billion USD (2013)
- Products comprise vaccines, blood factors, hormones, growth factors and monoclonal antibodies (mAb)
- Several biopharmaceuticals have blockbuster status with annual sales of >1 billion USD

		Sales	Year first	
Ranking	Product	(\$ billions)a	approved	Company
1	Humira (adalimumab; anti-TNF)	11.00	2002	AbbVie & Eisai
2	Enbrel (etanercept; anti-TNF)	8.76	1998	Amgen, Pfizer, Takeda Pharmaceuticals
3	Remicade (infliximab; anti-TNF)	8.37	1998	J&J, Merck & Mitsubishi Tanabe Pharma
4	Lantus (insulin glargine)	7.95	2000	Sanofi
5	Rituxan/MabThera (rituximab; anti CD20)	7.91	1997	Biogen-IDEC, Roche
6	Avastin (bevacizumab; anti-VEGF)	6.97	2004	Roche/Genentech
7	Herceptin (anti-HER2)	6.91	1998	Roche/Genentech
8	Neulasta (pegfilgrastim)	4.39	2002	Amgen
9	Lucentis (ranibizumab; anti-VEGF)	4.27	2006	Roche/Genentech, Novart
10	Epogen/Procrit/Eprex/ESPO (epoetin alfa)	3.35	1989	Amgen, J&J, KHK

Walsh, G.: Biopharmaceutical benchmarks. *Nat. Biotechnol.* (2014)

Introduction

Project objectives

- Monitoring proteolytic activities in various production hosts for biopharmaceuticals
- Comparing classical (CHO) and emerging (plants) production platforms
- Identification of specific proteases involved in target protein degradation and approaches to minimize their activity
- General project approach
 - Identification of a target protein: anti-HIV mAb 2F5
 - Screening a small molecule library of protease inhibitors
 - Activity-based protein profiling to identify proteases
 - Co-expression of protease inhibitors/gene silencing

Technical overview

CHO cells

Plant suspension cells

Intact plants

- Monitoring mAb 2F5 degradation in spiking experiments (spent culture media, cell extracts)
- Screening small molecule protease inhibitors (~80 subst.)
- Identification of proteases by ABPP and mass spectrometry

Small molecule inhibitor screening

Pepstatin: inhibitor of aspartic proteases E-64: epoxide inhibitor of cysteine proteases GM6001: hydroxamate inhibitor of MMPs

PMSF: sulfonyl fluoride inhibitor of serine proteases

DFP: fluorophosphonate inhibitor of serine

proteases

Spiking experiment in tobacco BY-2 cell culture supernatant indicates involvement of serine proteases in the degradation process of the antibody heavy chain (HC).

Mandal, M., et al. (2014): Inhibition of protease activity by antisense RNA improves recombinant protein production in *Nicotiana tabacum* cv. Bright Yellow 2 (BY-2) suspension cells. Biotechnology Journal

Activity-based protein profiling (ABPP)

Identified proteases (plants):

- Aspartic proteases (A1 family; MEROPS database)
- Cysteine proteases (C1 family)
- Metalloproteases (M1, M16, M17)
- Serine proteases (S8, S9, S10, S28 family)

Identified proteases (CHO cells)

- Cysteine proteases (C1 family)
- Serine proteases (S1 family)

ABPP in N. benthamiana

Po	C	21.	bes	
NbC26208175g0003.1	RD21	49	31	
NbS00040506g0007.1	RD21	2	12	
NbC26208175g0003.1	RD21	10	7	
NbS00040506g0007.1	RD21	2	2	
NbS00008667g0012.1	CTB	9	28	
NbS00003179g0007.1	RD21	0	5	
NbS00035145g0007.1	CTB	0	2	
NbS00003743g0028.1	XBCP	0	4	
NbS00018127g0007.1	XCP	1	1	
NbS00040834g0005.1	RD19		9	
NbS00010435g0011.1	RD19		4	
NbS00009882g0003.1	ALP		14	
NbS00018589g0007.1	CTB		14	

ABPP in CHO supernatant

A: PLCPs

B: Cathepsin B

C: Legumains

D: PLCPs

Papain-like cysteine proteases (C1 family) are active in CHO spent culture medium under acidic conditions.

Detection of proteases by 2-DE (CHO)

- Host cell proteins (HCP) of industrial CHO cell culture supernatants were investigated
- HCP profile was broadly similar across the panel
- Actual amounts of some specific HCPs differed
- Also identified proteases exhibiting differences in abundance

Hogwood, C.E.M., Ahmad, S.S., Tarrant, R.D., Bracewell, D.G. and Smales, C.M. Biotechnol. J. 2015. DOI.10.1002/biot.201500010.

Detection of proteases in culture medium by zymography (CHO)

Active proteases are detected by zymography:

Proteins of culture supernatants are separated under by native electrophoresis in a PAA gelatin matrix.

Clear zones indicate gelatin degradation by proteases.

- High activity of proteases in serum-containing medium and culture supernatant
- Much less protease activity in culture supernatants of chemically defined ERA-GM medium
- Implementation of special components (e.g. salts, chelators, ...) in ERA media can further reduce protease acitivity

CHO adaptation (AM) and growth medium (GM) development

Medium development:

- Challenging due to requirements for various applications:
 - Serum removal
 - Adaption to suspension
 - High performance production process

70

Cell line generation from single cell CHO clones

- Example: generation of an Erythropoietin(EPO)-producing cell line based on adapted project host cell
- ERA-AM, ERA-GM and feed solution will be further evaluated aiming for commercialization of these media

Transient gene expression in N. benthamiana

Agrobacterium tumefaciens carrying expression cassette

GFP expression

Applications

Protein production: e.g. ZMapp mAb cocktail against Ebola virus Rapid construct testing: RNAi; co-expression of protease inhibitors

Rapid construct testing in N. benthamiana

- Approx. 50 proteases identified in the apoplast (some upon *A. tumefaciens* infiltration)
- 11 active, secreted Cys proteases identified by activity-based proteomics
- Cys protease inhibitor prevents cleavage of 2F5 antibody HC in vivo
- RNAi: 2/11 proteases crucial for POI cleavage; 5/11 crucial for plant survival

Stable expression of Kazal-like serine protease inhibitor in tobacco BY-2 cells

- Tobacco BY-2 cells have been stably transformed with Kazal-like serine protease EPI 10 from *P. infestans* to inhibit subtilases
- Clones that actively secrete EPI 10 inhibitor show less mAb 2F5 heavy chain degradation
- In parallel cell lines were generated that stably express serpin H1 from M. sexta
- Obstacle: clones with high expression levels display reduced growth performance

Summary

- Active proteases acting on biopharmaceuticals have been identified in mammalian (CHO) and plant production systems (M. sativa, N. benthamiana, N. tabacum)
- Strategies have been developed to suppress these proteolytic activities (RNAi, inhibitor expression, gene disruption, medium development)
- Development of improved production hosts is ongoing
- Follow-up projects
 - GreenProteases (ERC consolidator grant to Renier van der Hoorn
 - ERA-IB INNOVATE (C. Mark Smales, co-ordinator)

Dissemination activities

• Publications:

- Mandal, M.K., et al. (2014): Inhibition of protease activity by antisense RNA improves recombinant protein production in *Nicotiana tabacum* cv. Bright Yellow 2 (BY-2) suspension cells. Biotechnology Journal
- Hogwood, C.E.M., et al. (2015) An ultra scale-down approach identified host cell protein differences across a panel of mAb producing CHO cell line variants. *Biotechnol. J.* 2015. DOI 10.1002/biot.201500010
- Mandal, M. K., et al. (2016): Tackling unwanted proteolysis in plant production hosts used for molecular farming. Frontiers in Plant Science. In press
- Hogwood, C.E.M., et al. Protease profiling and activity assessment in Chinese hamster ovary cells. 2016. In preparation.

Conference contributions

- Abranches R.: The model legume Medicago truncatula expression system: Towards high-yield production of recombinant proteins in cell suspension cultures. 1st ISPMF conference. June 2014, Berlin, Germany
- Hogwood, C.E.M et al.: Mammalian CHO cell line protease activity and their impact upon secreted recombinant protein authenticity. BEBPA's 3rd Annual Host Cell Protein Workshop (2015), San Francisco, USA
- Santos, R.B. et al.: Host engineering of *Medicago truncatula* cell cultures for the improved production of recombinant proteins, RPP8, 22.-24.04.2015, Palma, ES
- Mandal, M.K. et al.: Coping with proteolytic degradation of recombinant proteins (produced in tobacco BY-2 cells. PBVAB, 08.-10.06.2015 Lausanne, CH

General Evaluation

- Benefits of international collaboration
 - Investigation of multiple production systems in parallel
 - Lab visits of researchers for training purposes
 - Open exchange of methods, materials and ideas
 - Training of PhD students in a collaborative international setting
- Comments, feedback to ERA-IB
 - Building a research consortium would be facilitated by the participation of more EU member states/funding agencies

Contact details

- C. Mark Smales: <u>C.M.Smales@kent.ac.uk</u>
- Christoph Heinrich: <u>christoph.heinrich@xell.ag</u>
- Renier van der Hoorn: <u>renier.vanderhoorn@plants.ox.ac.uk</u>
- Rita Abranches: ritaa@itqb.unl.pt
- Andreas Schiermeyer: <u>andreas.schiermeyer@ime.fraunhofer.de</u>

Acknowledgements

- Catherine E. M. Hogwood, University of Kent, UK
- Rita B. Santos, ITQB, PT
- Balakumaran Chandrasekar, MPIPZ, DE
- Manoj K. Mandal, Fraunhofer IME, DE
- Carolin Fritzenkötter, Xell AG, DE

