

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMA2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Project name: <u>Synthetic Biology for Industrial Production</u> of St<u>eroids</u>

Project acronym: Syntheroids

Name: Alberto Sola-Landa (INBIOTEC)

- INBIOTEC (research institute), Spain
- Pharmins Ltd. (company), Russia
- SINTEF, (research institute) Norway
- TU- Dortmund (university), Germany
- BioNice (company), Spain
- Total project budget: 2,308,000 €
- Project start: May 15th, 2018

Kick-off meeting May 24th, 2018 León, Spain

Partner 1, Coordinator

Dr. Alberto Sola
INBIOTEC (Institute for Biotechnology)
León, Spain
E-mail: alberto.sola@inbiotec.com

- ✓ Coordination and management
- ✓ Genome sequencing
- ✓ Transcriptomics and Proteomics
- ✓ Genetic engineering

Partner 2

Dr. Marina V. Donova Pharmins Ltd. Pushchino, Russia

- ✓ Transcriptomics
- ✓ Analysis of metabolic capacities
- ✓ Genetic engineering

Partner 3

Dr. Simone Balzer Le
SINTEF Industry, Biotechnology and Nanomedicine
SINTEF AS
Trondheim, Norway

- ✓ Metabolomics
- ✓ Genetic engineering
- ✓ Process design for bioproduction
- ✓ Coordination of DM activities

Partner 4

Dr.-Ing Gerhard Schembecker
Laboratory of plant and process design
Technical University of Dortmund
Dortmund, Germany

- ✓ Downstream processes
- ✓ Economic evaluation of process alternatives
- ✓ Integrate up and downstream processing
- ✓ Elaborate the LCA

Partner 5

Dr. José Luis Barredo Department of Biotechnology Bionice S.L.U. León, Spain

- ✓ Analysis of steroid production
- ✓ Fermentation development
- ✓ Demonstration at industrial scale

Steroids

- Second largest class of drugs
- More than 300 clinically approved steroidal compounds
- Clinical use since 1949
- Multiple applications
 - ✓ Rheumatoid arthritis
 - ✓ Neurodegenative diseases
 - ✓ Cancer
 - ✓ Inflammatory diseases
 - ✓ Metabolic disorders
 - ✓ Contraception
 - ✓ Hormonal insufficiencies
 - ✓ Others

Use of microorganisms for steroid production

√ 1949

- Chemical synthesis
- Deoxycholic acid
- 31 steps
- \$200 per gram

√ 1952

- Fungal C11 hydroxylation
- Deoxycholic acid
- 11 steps
- \$6 per gram

√ 1980

- Mycobacterium mutants
- Phytosterol
- \$0.46 per gram

The central objective of Syntheroids is to develop an integrated production process for pharmaceutical steroids using Synthetic Biology and improved processing technology. Syntheroids project has four specific objectives:

- Omics data integration from steroid producing Actinobacteria as a source of Synthetic Biology targets for productive strain evolution.
- Creating genetically engineered bacterial strains capable of producing innovative C22-steroid precursors.
- Reduce or eliminate end-product inhibition by mutagenesis, genetic engineering and process optimization.
- Integrate up- and downstream processes for an eco-friendly bioconversion.

Scientific approaches

- ✓ Synthetic biology
- ✓ Use of bioinformatics
- ✓ Biotechnological approaches

Project topic areas

- ✓ Sustainable production and conversion of different types of feedstocks and bioresources into added value products
- ✓ Development of new products, **value-added products** and supply services
- ✓ Sustainable industrial processes

Data Management

- ✓ Collaboration with and subcontracting to FAIRDOM
- ✓ All raw data stored at each partner, local hub for data sharing (at SINTEF), final data migrated into online hub (FAIRDOM Hub)
- ✓ Data generated:
 - Genome sequencing
 - Transcriptomics
 - Proteomics
 - Metabolomics
 - LC/GC-MS analysis
 - Fermentation
 - Simulation/Modelling
 - Downstream processing

Communication Plan

Life Cycle Assessment

- ✓ Robot based conceptual design methodology
 - Robot based HTS for miniaturized and automated experiments
 - Key performance indicators
 - Modelling to monitor and predict experimental conditions
- ✓ Identification of **cost drivers** for the unit operations and for fermentation
- ✓ Rating different **feeding strategies** and **process evaluation** in early stages
- ✓ Inclusion of mass and energy balances
- ✓ Inclusion of recycle and waste streams
- ✓ LCA from "cradle-to-factory gate"

Expected outcomes

Outcomes to be achieved

- ✓ To increase the **product portfolio** and decrease **end-product inhibition** combining Synthetic Biology and 'omics analyses
- ✓ To ease **product purification** using a robot-based conceptual design methodology together with modelling and simulation
- ✓ To decrease production costs with a better integration of industrial procedures (up- to downstream)

Expected outcomes

Planed implementation and exploitation of results

- ✓ Bionice will **validate** the steroid production processes in a **relevant industrial environment** using strict approaches to standardize, scale-up and monitor the manufacturing, according to GLP and GMP standards
- ✓ Bionice will provide to Crystal Pharma improved fermentation and purification processes for starting materials enabling the production increase, including some new compounds not produced today
- ✓ Pharmins will create a **platform for effective new bioprocesses** for valueadded steroids from phytosterols, widening the portfolio of microbiotechnologies of the company

Summary

What is proposed

- ✓ To generate effective engineered strains
- ✓ To improve bioprocess efficiency
- ✓ To improve product recovery

What should be achieved

- ✓ A wider spectrum of bio-based steroids
- ✓ A decreased by-product production
- ✓ Reduced end-product inhibition
- ✓ A microbial chassis for efficient and selective eco-friendly phytosterol bioconversion