

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMA2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Project name: Environmental-friendly bioadhesives from renewable resources

Project acronym: WooBAdh Name: Maria Teresa Moreira

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

Frankfurt am Main, 13.06.2018

Contact details

Maria Teresa Moreira

maite.moreira@usc.es

Department of Chemical Engineering University of Santiago de Compostela

Group of Environmental Biotechnology

- 10 Professors & Ass. Professors
- 10 Post-docs
- I Manager, 6 Technicians (4 lab, 2 administration)
- 40-45 PhD Students

http://www.usc.es/biogrup/

Introduction

Properties of formaldehyde based resins

Urea-formaldehyde (UF) resins

The most widely used thermosetting resin for wood

Widely used for the manufacture of interior grade plywood and particleboard

Extensively used for producing hardwood plywood for furniture and interior paneling and for furniture assembly

They are usually mixed with hardeners, fillers, and extenders to obtain formulations which cure at RT to nearly 200 °C

Fillers and extenders are added to the resin to control flow, viscosity and resin penetration into the wood

Production of UF resins

EV Will restrict the placing on the market of formaldehyde and included formaldehyde releasers in mixtures with the respective concentration limits

The regulation will be adopted in *the first quarter 2018* and the restriction on formaldehyde and some releasers for their placing on the market for supply to the general public will apply from the date of entry into force of the regulation.

2

3

Alternatives to UF resins

Modified UF-resins with scavenger additives, such as melamine, to reduce the rate of emissions of formaldehyde

Alternate formaldehyde resins, such as phenol formaldehyde, which cure at the factory during manufacture and have much lower formaldehyde emissions in use than UF

Alternate fossil fuel-based binders containing no added formaldehyde, such as methylene diphenyl diisocyanate (MDI)

Alternate binders based on renewable resource materials (Bioadhesives)

Why change to bioadhesives?

Reduce VOCs (formaldehyde) emissions

Sustainability of raw materials and final products (petroleum independence)

Raw Materials

- By-product from the cellulose pulping process
- Great availability, low value
- Very heterogeneous structure, quality & reactivity
- Depending on the process:
 - Sulfur containing lignin (Kraft lignin)
 - Non-sulfur biorefinery lignin (Organosolv lignin)

Raw Materials

Condensed tannin

- Made of hydroxylated C-15 flavonoids
- Its structure leads to fast curing rates and high viscosity of bioadhesives

Hydrolysable tannin

- Polymeric esters of carboxylic acids and sugars
- Readily soluble in water and easily hydrolyzed

Industrial applications (Inks, Textile dyes) Extracted from different LCB (Schinopsis sp., Castanea sp., Mimosa sp.)

Raw Materials

- Soybean
- Wheat gluten: widely available as by-product from bioethanol production

Soybean protein

X Low pressing temperature

The WooBAdh project

Project aim

The **WooBAdh** project aims to study the feasibility of replacing formaldehyde in wood adhesives by natural components derived from wood or other vegetable matter

Project aim

The Consortium

Maria Teresa Moreira (Coordinator)

• Universidade de Santiago de Compostela (Spain)

Antonio Pizzi

• Universite de Lorraine (France)

Milan Sernek

• Univerza v Ljubljana (Slovenia)

Marie Pierre Laborie

• Albert-Ludwigs-Universität Freiburg (Germany)

Detlef Schmiedl

• Fraunhofer ICT (Germany)

Other Collaborators

Gantt Chart of the Project

Project Overview

Work Packages

2	FhICT		USC			
M1		Month			M24	
						WP1

1.1 Tailored chemical functionalization of substances as conditioning step			
1-24			

1.2 Activation and demethylation of lignin by oxidoreductases	USC
1-24	

1.3 Fractionation/molecular sorting of different lignins as conditioning step		
1-12		

Fractionation of lignin

Fractionation of Kraft-Lignin into low- and high-molecular weight fractions by thermal separation techniques.

- ✓ Reduce heterogeneity & polydispersity
- ✓ Increase subsequent chemical reactivity

From: Rohde et al (Fraunhofer ICT)

Increasing the reactivity of substrates

Chemical functionalization

The catalyzed region-selective ring opening reaction takes place without side product formation

Use of green organic solvents and special catalysts (nucleophilic amines)

The reactions can be carried out at high pressure/high temperatures or as long term processes (24 h) at ambient temperature

 $HO_{H} + HO_{H} + H$

Increasing the reactivity of lignin

Enzymatic functionalization

Abundant methyl groups in lignin makes it less reactive and reduces cross-linking

Increasing the reactivity of lignin

Deliverables WP1

ERACoBioTech	Work Packages		USC BioGroup
ULor	UF		
M1	Month	M36	WP2
2.1 Study of different lign Ulor, UF	in sources <u>X</u> 1-28	2.2 Study of different tannin Ulor, UF	sources
2.3 Determination of med linking, hardening reaction Ulor, UF	hanisms of cross- n <u>12-24</u>	2.4 Formulations of mixed lignin or lignin derived aldehyde with tannin to obtain a formaldehyde-free adhesive ULorULor18-30	
2.5 Copolymerization of li lignin with other natural of UF	ignin and modified compounds <u>18-30</u>	2.6 Evaluation of bonding of different adhesive formulation Ulo, UF	the new ons 30-36

Formulation of bioadhesives

Reaction of tannins and lignins with ammonia to change the –OH group of polyphenols by the more reactive –NH2.

Reaction of tannins and lignins with diamines and polyamines, yielding aldehyde-free crosslinking

The cross-linking and hardening reaction of tannin and lignin with triethyl phosphate

The reaction of tannins with furfuryl alcohol

Formulation of bioadhesives

From: Basso et al 2017 (10.3390/polym9060206)

Deliverables WP2

ERACoBioTech	Worck packages		USC UNCERTAGE Bio Group	
ULju	ULor, UF			
M1	Month	M36	WP3	
3.1 Curing characterization bioadhesives ULju, UF	of the 1-24	3.2 Strength and durability adhesives and classificatio standards ULju	y testing of new n according to EN ∑12-36	
3.3 Technology of bonding adhesives ULju, Ulor	with new <u> 18-30</u>	3.4 Determination of the V ULor	/OC emissions	
3.5 Selection of the product formulation that presents the best characteristics Ulju, UF, ULor				

Deliverables WP3

Life cycle of a product

Socio-economic indicators

Stakeholder category	Subcategory	Indicator	
1. Workers	Equal opportunities	Women-to-man ratio of labor force participation	
	Fair salary	Women-to-man-ratio of salary (for similar work)	
	Working hours	Total working hours per week	
2. Consumers	Health & Safety	Fulfilled existing regulations	
	Transparency	Information on the formulation, use and effects	
	Benefits of the product	Value added of the product (according to its applications)	
3. Society	Contribution to economic	Importance of sector in the country	
	development		
	Public commitments to	Performed environmental assessments (LCA, risk	
	sustainability issues	assessment)	

Deliverables WP4

Deliverables WP5

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMA2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Project name: Environmental-friendly bioadhesives from renewable resources

Project acronym: WooBAdh Name: Maria Teresa Moreira

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

Frankfurt am Main, 13.06.2018