

Final seminar of the cofunded projects of ERA CoBioTech

Title: Streamlined Streptomyces cell factories for industrial production of valuable natural products Project acronym: MISSION

Name: Andriy Luzhetskyy, Saarland University

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

Project partners

- University of Saarland, Germany
- Helmholtz Institute of Pharmaceutical Research, Saarbrücken, Germany
- University of Ljubljana, Slovenia
- Novartis/LEK, Slovenia
- Entrechem, Spain
- Eurice, Saarbrücken, Germany

- Total project budget: 1.791.000 €
- Project start: 01 May 2018

Project Objectives: Sustainable supply of anti-infectives and anti-cancer drug candidates

- ✓ Synthetic biology and metabolic engineering to create a chassis strain of Streptomyces with superior growth and robustness, and tuneable metabolic activities
- "Plug-in" of secondary biosynthetic pathways to derive streamlined cell factories for novel antiinfectives and anti cancer drugs

clavulanic acid

EC-70124

griselimycin

myxopyronin

Streptomyces: Two-time Noble Price winner!

Technical overview

Scientific Approach:
 Interdisciplinary

 integration of systems and
 synthetic biology,
 metabolic engineering,
 process development

 Creation of an efficient value chain

Objectives:

- ✓ Systems-wide profile of wildtype and industrial *S. rimosus*
- ✓ Analyze new strains created
- Integrate multi-omics data to understand cellular function and identify targets for metabolic engineering.
- GEM as premium knowledge and database.

- Multi-omics data sets of initial and new strains
- ✓ Target identification for strain engineering
- ✓ Systems biology model

Project Plan WP2 – Synthetic biology

- Objectives:
 - To provide a standard operating procedure for streamlined genome engineering of industrial *S. rimosus* strains.
 - ✓ To generate the *S. rimosus* chassis strain for optimized heterologous production of bioactive natural products.
 - ✓ To reconstruct and verify synthetic promoters, RBSs and terminators in an industrial *S. rimosus* strain.

- Technology platform for the efficient genome engineering of *S. rimosus*
- ✓ First-generation S. rimosus chassis strain
- ✓ Final collection of improved *S. rimosus* chassis strains and their genome sequences

Project Plan WP3 – Metabolic engineering of core functions

Objectives:

- Optimize building block, redox and energy supply.
- Implement novel precursor pathways to enhance the chemical space
- ✓ Implement orthogonal pathways to drive the production of e.g. polyketides, isoprenoids and other compounds (with WP₂).

- ✓ Bioinformatic data set on S.
 rimosus metabolic potential
- Cloned target genes (enzymes) or metabolic pathways
- Hosts carrying the new pathways

Project Plan WP4 – Biosynthetic engineering of target gene clusters

- Objectives:
 - ✓ Synthesize target gene clusters
 - ✓ Re-engineer clusters via mini-plasmids
 - Introduce clusters into suitable strains of S. rimosus and optimized versions (WP3).
 - ✓ Evaluate the productivity at lab scale.

- Gene clusters encoding biosynthesis of target compounds
- Engineereed gene clusters containing suitable promoters and regulatory elements located on replicative or integrative vectors
- ✓ Ready-to-use S. rimosus transformants

Project Plan WP5 Bioprocess development

Objectives:

- ✓ Re-adaptation of industrial media
- ✓ To scale down the process to lab-scale
- ✓ Strain testing at 5-L- and 20-Lfermenter scale.
- ✓ Down-stream processing.

- Re-optimized media and fermentation procedures at lab, 5-L and 20-Lfermenter scale
- The best-performing strains tested and selected target compounds isolated

Summary and Project outcomes

clavulanic acid

EC-70124

тухоругопin

MeH

griselimycin

- Widely exploitable microbial hosts for the production of industrial goods
- High value anti-infectives and anti-cancer drugs in sufficient amount and quality for further commercial development

RRI aspects

Round table and public event in Slovenia, Dorbna, 25.09.2019 and in Germany, Saarbrücken, HIPS Symposium 27.06. 2019. MISSION presentation in Piza, Genetics of Industrial Microorganisms International Symposium, 08-11.09.2019.

Flyers, webpage, posters etc.

Contact details

Prof. Andriy Luzhetskyy (MISSION Coordinator)

Pharmaceutical Biotechnology Saarland University

andriy.luzhetskyy@uni-saarland.de

MISSION team at kick-off meeting in Saarbrücken, May 2018