

BIOTECH RESEARCH AND INNOVATION HACK 2021

Final seminar of the cofunded projects of ERA CoBioTech

SUSPHIRE

SUSPHIRE CONSORTUM

PROJECT DURATION
36 Months 30/09/2021

TOTAL REQUESTED FUNDING 1.643.000 €

TOTAL COSTS 1.861.000 €

CONSORTIUM

P1	Dr Diego Orzaez Agencia Estatal Consejo Superior de Investigaciones Científicas IBMCP	Fausto Elio SN, 46022, 46022 VALENCIA Spain	dorzaez@ibmcp.upv.es Tel.: 0034 963879933 Mobile: 0034 963879933 Fax: 0034 +34963879933
P 2	Dr Nicola Patron Earlham Institute Engineering Biology	Norwich Science Park, NR4 7UZ Norwich United Kingdom	Nicola.Patron@earlham.ac.uk Tel.: 0044 450845 http://www.earlham.ac.uk
P 3	Prof Heribert Warzecha Technische Universität Darmstadt Biologie	Schnittspahnstrasse 4, 64287 Darmstadt Germany	warzecha@bio.tu-darmstadt.de Tel.: 0049 61511620900 Fax: 0049 61511620902 https://www.tu-darmstadt.de/
P 4	Dr Spela Baebler National Institute of Biology Department of Biotechnology and Systems Biology	Vecna pot 111, 1000 Ljubljana Slovenia	Spela.Baebler@nib.si Tel.: 00386 59252825 http://www.nib.si/eng/
P 5	Mrs Teresa Gadea ECOLOGIA Y PROTECCION AGRICOLA SL NA	GREGAL 11, APDO. CORREOS 50, 46240 CARLET Spain	tgadea@epa-ecologia.com Tel.: 0034 962558098 Mobile: 0034 655853042 http://www.epa-ecologia.com

Introduction

Sustainable bioproduction of insect pheromones for pest control in agriculture

Chemically-synthetized pheromones are very efficient and highly selective pest control agents in agriculture

Limited use due to difficult and/or unsustainable chemical synthesis approaches

More economic strategies for both the synthesis of pheromones and formulation of active ingredients into dispensers can be developed using biotechnology

This could lead to increased viability of insect pheromones for pest control in agriculture

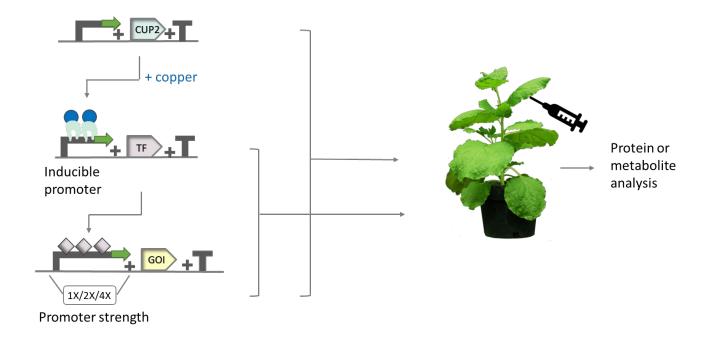
More environmentally friendly biosynthetic production methods for pheromone-based aligns with Europe's Bioeconomy objectives.

Introduction

Sustainable bioproduction of pheromones

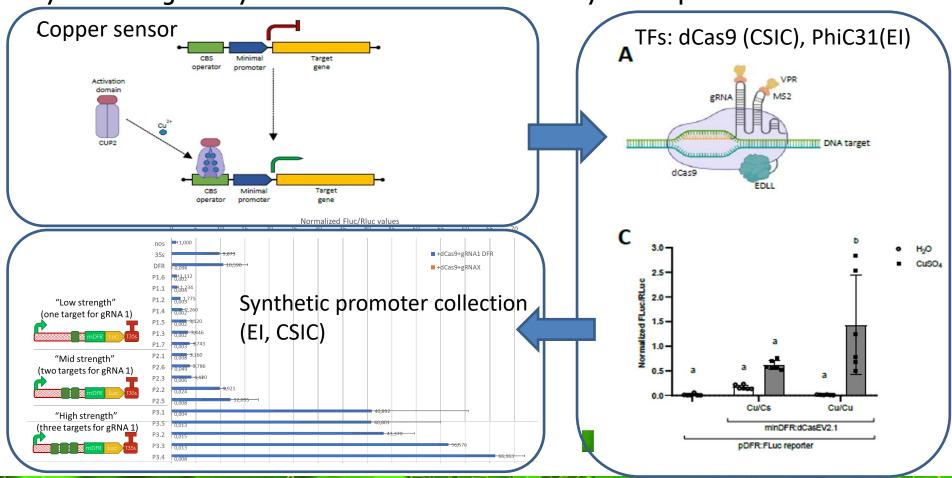
Previous studies demonstrated that it is possible to engineer *N. benthamiana* plants to produce moth sex pheromones via heterologous expression of the insect enzymes.

- Develop synbio tools for conditional expression of metabolic pathways in plants
- Create improved versions of lepidoptera (moth) pheromone biofactories (fatty-acid derivatives).
- Identify and validate key biosynthetic enzymes for the bioproduction of Coccoidea (mealybugs) pheromones (irregular monoterpenoids).
- Create plants producing mealybug pheromones

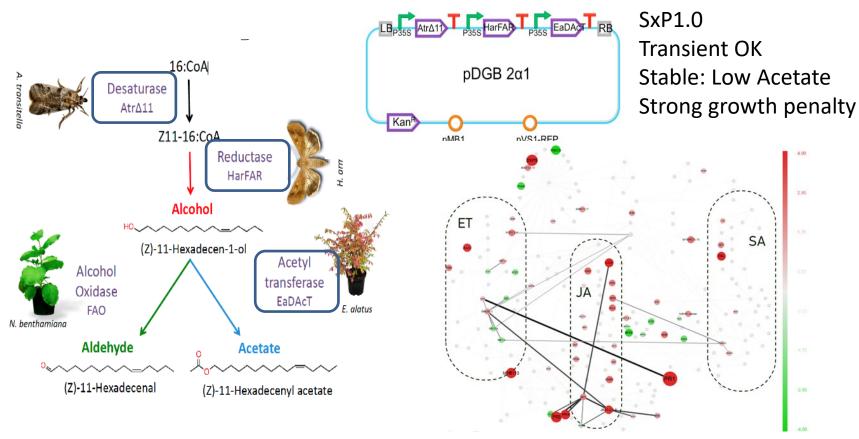


<u>Molecular tools</u>. Develop optimal genetic constructs for control of biosynthesis of moth and Coccoidea pheromones in plants and fungi.

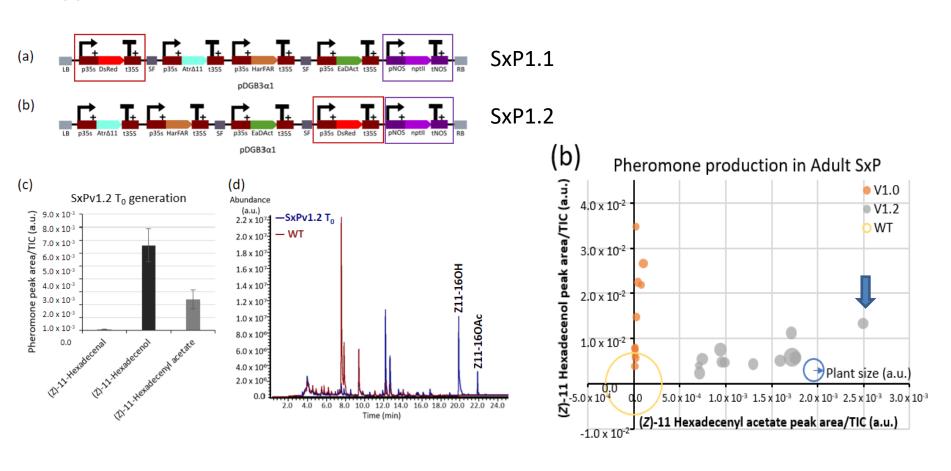
Development and implementation of a **copper switch** linked to a **synthetic regulatory cascade** made of **a TF and a collection of synthetic promoters**



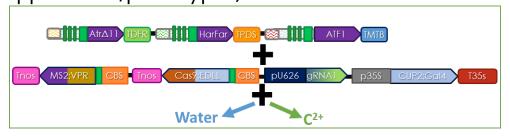
<u>Molecular tools</u>. Development and implementation of a **copper switch** linked to a **synthetic regulatory cascade** made of a **collection of synthetic promoters**

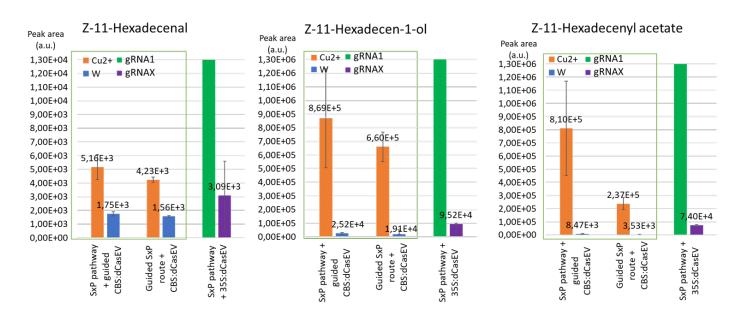


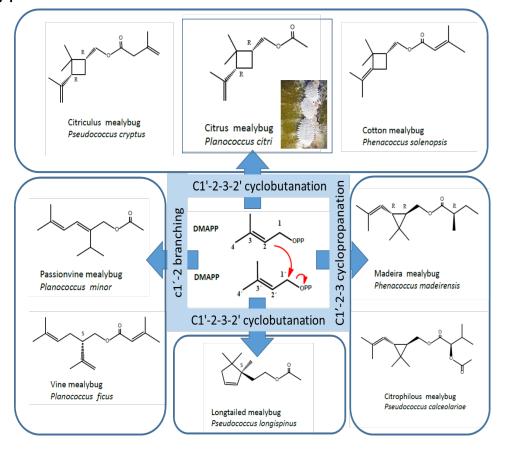
<u>Lepidoptera Pheromone</u>. New prototypes for **constitutive** bioproducers. System biology approaches to understand effects on fitness


NIB: Systems biology analysis, activated stress responses, truncated enzyme

<u>Lepidoptera Pheromone</u>. New prototypes for constitutive bioproducers. System biology approaches to understand effects on fitness


<u>Lepidoptera (moth) pheromone</u>. Creation of conditional versions (SxPv₂) using tools in WP₁

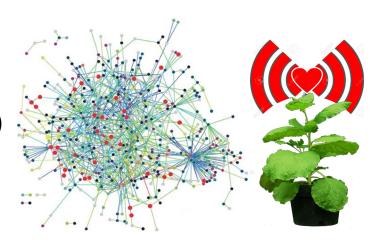

	_			<u></u>		
Clone ID	Nptll	CUP2	P3	P4	P5	table pts
pEPKKΩ1SP0492	NptII	35Sp-CUP2	cbs-AtrΔ11	cbs-int_ScATF1	cbs-HarFar	3
pEPKKΩ1SP0493	NptII	35Sp-CUP2	cbs-HarFar	cbs-Atr∆11	cbs-int_ScATF1	3
pΕΡΚΚΩ1SP0494	NptII	35Sp-CUP2	cbs-int_ScATF1	cbs-HarFar	cbs-Atr∆11	0
pEPKKΩ1SP0495	NptII	35Sp-CUP2	cbs-AtrΔ11	cbs-int_EfDAct	cbs-HarFar	2
ρΕΡΚΚΩ1ΚΝ0496	NptII	35Sp-CUP2	cbs-HarFar	cbs-AtrΔ11	cbs-int_EfDAct	3+2 in lab
pΕΡΚΚΩ1ΚN0497	NptII	35Sp-CUP2	cbs-int_EfDAct	cbs-HarFar	cbs-Atr∆11	2
pEPKKΩ1KN0519	NptII	35Sp-CUP2	cbs-AtrΔ11	cbs-ScATF1	cbs-HarFar	0 (TC)
pEPKKΩ1KN0520	NptII	35Sp-CUP2	cbs-HarFar	cbs-Atr∆11	cbs-ScATF1	0 (TC)
pEPKKΩ1KN0522	NptII	35Sp-CUP2	cbs-AtrΔ11	cbs-EfDAct	cbs-HarFar	0 (TC)
pEPKKΩ1KN0524	NptII	35Sp-CUP2	cbs-EfDAct	cbs-HarFar	cbs-Atr∆11	0 poorly calli
pEPKKΩ1KN0678	NptII	35Sp-CUP2	cbs-Atr∆11	cbs-SpATF1-2	cbs-HarFar	Not started
pEPKKΩ1KN0679	NptII	35Sp-CUP2	cbs-HarFar	cbs-Atr∆11	cbs-SpATF1-2	Not started
ΡΕΡΚΚΩ1ΚΝ0680	NptII	35Sp-CUP2	cbs-SpATF1-2	cbs-HarFar	cbs-Atr∆11	Not started


<u>Lepidoptera Pheromone</u>. Creation of conditional versions **SxPv2** using new molecular tools (El and CSIC approaches/prototypes)

<u>Coccoidea pheromone</u>. Generate transcriptomic data and identify key enzymes. Create bioproduction prototypes.

CoBioTech

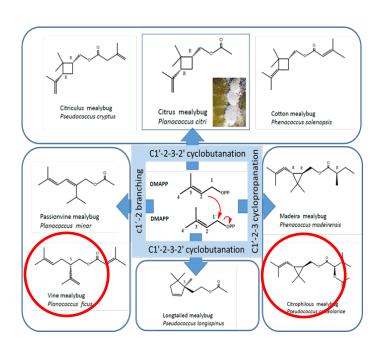
Technical overview



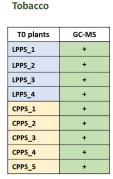
<u>Coccoidea pheromone</u>. Generate transcriptomic data and identify key enzymes. Create bioproduction prototypes.

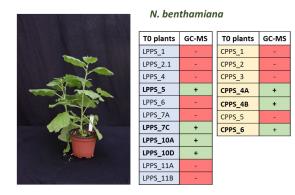
NIB, TUDA, CSIC

- PACBIO transciptome
- Differential expression (mated vs virgin females)
- Phylogenetic analysis
- Bioinformatics

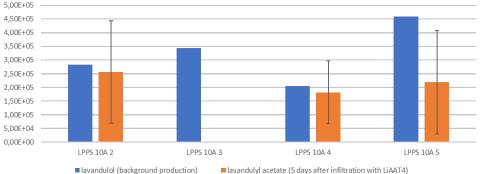


- Exhaustive analysis of >50 candidates for activity in E. coli and N. benthamiana
- No planoccocyl (cyclobutane) biosynthetic activity was isolated from *Planococcus citri* genome.
- A **new enzyme with irregular Isopenthenyl transferase** activity *in vitro* was characterized (TUDA), but regular activity was predominant.
- Several new regular IPT and terpene cyclases have been identified from insects
- Alternative strategies: irregular monoterpenes from plant origin LPPS and CPPS





<u>Coccoidea pheromones:</u> Transgenic plants producing alternative irregular monoterpenes (pheromone precursors) chrysantemol and lavandulol ant their acetylated forms



Conversion of lavandulol to lavandulyl acetate by LiAAT4

RRI aspects

<u>Ethics, dissemination and outreach</u>. Responsible Research and Innovation. Communication and dissemination plan. Data stewardship according to the FAIR principles.

ETHICS

Provenance, pedigree, debates in RRI within the consortium (Prof.. Normand TUDA)

DISSEMINATION and OUTREACH

Producers

2018 Achema 2018 Agritech East, UK 2019 Meeting at Merck, Darmstadt

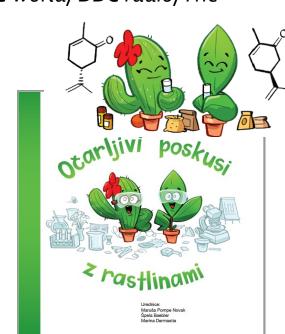
Government and Regulators

2019 UK House of Commons (EI).

2020 EU parliament policy debate (with BASF) Workshop not possible due to pandemic (EI)

Consumers, including the general public

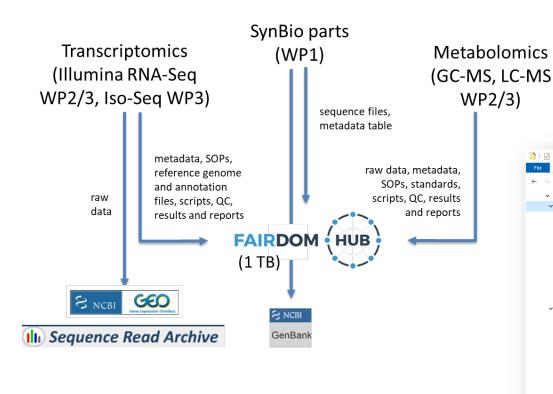
Media-releases highlighting project funding, results, publications provided to EU biotechnology networks and relevant industry magazines e.g. International Pest Control, EuroFruit, [All partners] Years 1, 2 & 3 (see http://susphire.info/susphireproject/media/ for full list) (BBC world, BBC radio, The Guardian, etc.)

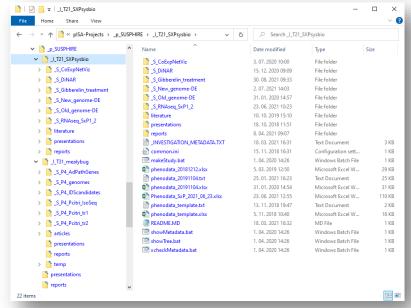

2019 El Open Day, UK;

2019 Fascination of Plants, Slovenia.

2019/2020 collaboration with SAW trust

2021 Children's book 'Fascinating Experiments with Plants'


Note: less activities in year 2 and 3 due to the pandemic



Data management

pISA-tree
Investigation
Study
Assay

Technology Transfer

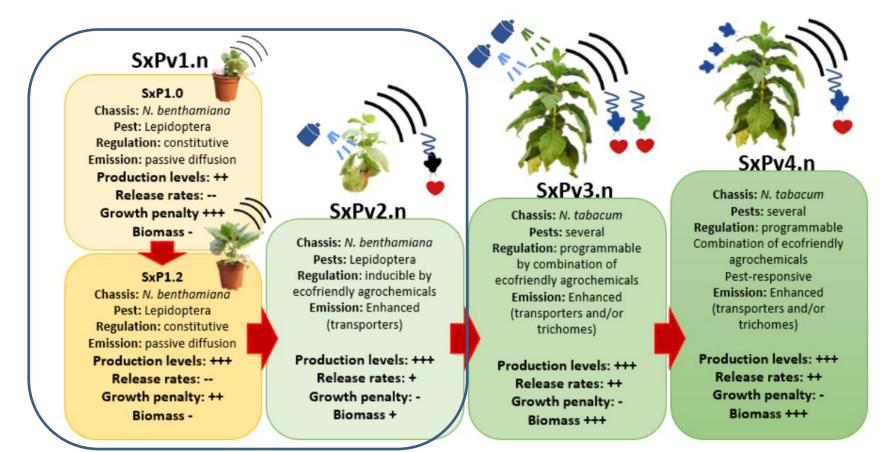
- Moth pheromones. TRL3 (SxPv1.0) PoC was advanced to TRL4 (SxP1.2) live biodispenser, measurement production and emission rate. TRL5 not achieved. Release rates low. Not worthwhile
- Mealibugs pheromones: Principle TRL1-2 was not advanced further for citri (gene not found). As alternative, other irregular plant emitters were moved from TRL1-2 to TRL3-4
- Moth pheromones: What do you plan after the project? Finalize search for elusive citri.

Summary

- What was proposed: Bioproduction of 2 types of pheromones (moth and mealybugs)
- What was achieved: Bioproduction of 2 types of pheromones (moth and mealybugs)

BUT:

Moth pheromone (SxP1.2) release rates need to be improved. Conditional expression phenotypes not finished yet


Discovery of key biosynthetic steps Planococus citri not achieved Mealybugg pheromones bioproduced are not those initially planned.

What are the plans for future (any follow-up projects?)
FOLLOW UP projects at national level in all three aspects. New discovery approaches, alternative chassis.

Project outcomes

Production of Volatile Moth Sex Pheromones in Transgenic Nicotiana benthamiana Plants BioDesign Research 2021. In press. https://www.biorxiv.org/content/10.1101/2021.03.31.437903v1

Project outcomes

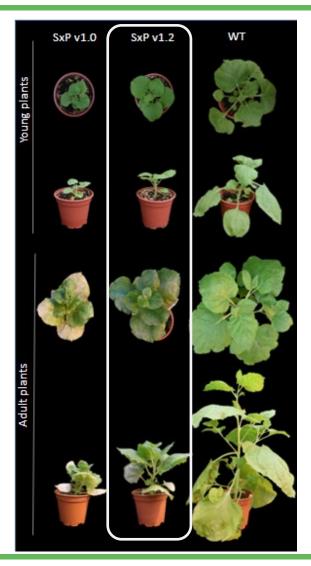


Table 1. Quantity (μg) of (Z)-11-hexadecenol (OH) and (Z)-11-hexadecenyl acetate (OAc) extracted from SxPv1.2 individuals by solvent extraction and GC/MS/MS quantification.

plant	material	μg OH/g plant	μg <u>OAc</u> /g plant	
SxPv1.2 T ₁ -3	fresh leaves	164,9	9,6	
SxPv1.2 T ₁ -4	fresh leaves	129,9	8,6	
SxPv1.2 T ₁ -5	frozen -20C	78,1	10,5	
SxPv1.2 T ₁ -6	frozen -20C	115,1	17,3	
SxPv1.2 T ₁ -7	frozen -80C	75,8	11,8	
SxPv1.2 T ₁ -8	frozen -80C	104,8	12,9	
	mean ± se	111.4 ± 13.7	11.8 ± 1.3	

We would require between 1,000 Kg and 25,000 Kg of pheromone-producing intercropping biomass per Ha for effective mate disruption.

NEED to improve RELEASE

Alternative chassis

Table 2. Quantity (ng) of (Z)-11-hexadecenol (OH) and (Z)-11-hexadecenyl acetate (OAc) released by SxPv1.2 individuals obtained by volatile collection and GC/MS/MS quantification.

plant	ng collected OH	ng OH/day	ng collected OAc	ng OAc/day
SxPv1.2 T ₁ -1	209,3	69,8	193,3	64,4
SxPv1.2 T ₁ -2	225,6	75,2	359,4	119,8
SxPv1.2 T ₁ -3	222,6	74,2	250,7	83,6
SxPv1.2 T ₁ -4	293,9	98,0	256,8	85,6
mean ± se	237.8 ± 19.0	79.3 ± 6.3	265.0 ± 34.6	88.3 ± 11.5

Project outcomes

PUBLICATIONS

- Production of Volatile Moth Sex Pheromones in Transgenic Nicotiana benthamiana Plants BioDesign Research 2021. In press. https://www.biorxiv.org/content/10.1101/2021.03.31.437903v1
- Insect pest management in the age of synthetic biology. Mateos-Fernández et al, Plant Biotechnology
 Journal 2021 DOI: 10.1111/pbi.13685
- Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond. Vazquez-Vilar, et al. Current Protocols in Molecular Biology, 2021 https://doi.org/10.1002/cpmb.116
- Cai Y, Kallam K, Tidd H, Salzman A & Patron NJ (2020) Rational design of minimal synthetic promoters for plants. Nucleic Acids Research. https://doi.org/10.1093/nar/gkaa682
- Copper-regulated genetic switch and some successful synthetic regulatory elements (https://www.biorxiv.org/content/10.1101/2021.09.07.459151v1.full.pdf)
- Normand A. The ties that bind: collective experimentation and participatory design as paradigms for responsible innovation. Handbook of Responsible Innovation: A Global Resource, Edward Elgar, 2019. https://doi.org/10.4337/9781784718862
- Several publications in prep

PATENTS

- Irregular enzyme activity discarded
- SxP2.1 discarded
- New SxP versions to be decided
- New conditional expression tools for plants to be decided

General Evaluation

Benefits of international collaboration; publications; exchange of researchers etc.

Ideal consortium size, fruitful interactions despite CoVid.

Comments, feedback to ERA CoBioTech

Positive experience, collaborations will expand beyond the end of the project

Contact details

http://susphire.info/ DIEGO ORZAEZ IBMCP-CSIC

» DIEGO ORZAEZ

(Project coordinator) Instituto de Biología Molecular y Celular de Plantas (IBMCP), Spain

» NICOLA PATRON

The Earlham Institute (EI), UK

» ŠPELA BAEBLER

National institute of Biology (NIB), Slovenia

» HERIBERT WARZECHA

Technische Universität Darmstadt (TUDA), Germany

» ISMAEL NAVARRO

Ecologia y Proteción Agrícola (EPA), Spain